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Abstract

By revisiting previous definitions, we show that one can define an energy current
operator that satisfies the continuity equation for a general Hamiltonian in one
dimension. This expression is useful for studying electronic, phononic and
photonic energy flow in linear systems and in hybrid structures. The definition
allows us to deduce the necessary conditions that result in current conservation
for general-statistics systems. The discrete form of the Fourier’s law of heat
conduction naturally emerges in the present definition.

PACS numbers: 05.60.Gg, 44.10.+i, 66.70.−f

1. Introduction

The problem of energy transfer, electronic, phononic and photonic, in molecules and
nanosystems has recently gained lots of interest [1–7]. In molecules, understanding
energy flow is crucial for controlling reactivity, molecular dynamics and kinetics [8]. In
nanosystems, energy transfer has recently attracted much attention with implications in
thermal machinery [9–11], information processing and computation [12, 13], and molecular-
based thermoelectricity [14–16]. Of special interest are hybrid structures, e.g. normal metal–
superconductor junctions with applications in thermometry and refrigeration [17], and atom-
radiation field systems, serving as a prototype for studying thermodynamics of quantum
systems [18, 19].

From the theoretical point of view, systems of interest include collections of bosons,
fermions, spins and mixed-statistics models [20]. For example, energy transfer from a
dielectric solid into a molecule may be studied using a spin-boson model where the molecule
is represented by a single anharmonic mode (spin) and the bulk includes a collection of
harmonic modes (boson) [21]. In the analogous spin-fermion model an electronic excitation
is transferred between two metals through a local mode, modeling a vibrating molecule. If
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the central mode is harmonic, the model may further describe radiative heat transfer between
electronic conductors [7, 22].

In order to perform first principle quantum-mechanical calculations of energy transfer in
nanosystems it is necessary to consider a model-independent non-perturbative definition of
the energy current. This expression should be applicable in non-stationary cases, as well as
in steady-state situations. While there is no unique definition of the energy current operator
in non-relativistic systems [23], the constructed expression should still fulfil a symmetry
requirement, as we discuss below. We present here a consistent definition for the energy flux
operator using a generic one-dimensional (1D) Hamiltonian. We show that this expression
is useful for studying vibrational, electronic and spin-mediated energy transfer, and that it
yields a non-perturbative expression for the energy current in hybrid systems, e.g. at a solid–
molecule–solid interface represented by a two-bath spin-boson model.

Furthermore, the definition also brings in a useful physical insight: we derive a necessary
condition for energy conservation in various systems, bosonic and electronic, by calculating
the commutator of the total flux operator with H, the total Hamiltonian. If the current is a
conserved quantity, the transport is ballistic, the conductivity diverges and Fourier’s law of
heat conduction cannot be fulfilled [24].

Derivation of the Fourier’s law from fundamental principles, classical [24–27] or quantum
[28–30], is a great challenge in theoretical physics. Model calculations manifested that the
onset of diffusional behavior delicately depends on the details of the system. It is still not
clear what necessary and sufficient conditions must the Hamiltonian fulfil for showing the
Fourier’s dynamics. Here we circumvent this challenge, and rather than test the applicability
of the Fourier’s law in specific systems, derive a general, necessary condition for current
conservation. Systems that do not obey this condition may satisfy the Fourier’s law. As an
example, we verify that in systems of harmonic oscillators the total energy current is conserved,
so that once prepared, a current in a closed loop system will never vanish.

Another implication of the proper definition of the energy current is the identification of
a microscopic expression for the thermal conductivity in terms of Hamiltonian parameters.
This expression might be useful for studying the thermal conduction properties of molecular
wires and spin chains.

The paper is organized as follows. In section 2 we discuss the general definition of the
energy flux operator in one dimension. Section 3 applies this expression to complex structures,
e.g. the spin-boson model and the spin-fermion model, prototype models for studying energy
transfer in hybrid systems. In section 4 we show that a current conservation condition
naturally emerges from the energy flux definition for both bosonic and fermionic Hamiltonians.
Section 5 further explores current conservation in general 1D systems. From the energy flux
expression the discrete Fourier’s law can be naturally identified, as shown in section 6. In
section 7 we conclude.

2. Definition of the energy flux operator for a general Hamiltonian in one dimension

Defining an energy flux operator for a specific system such as phonons dates back to Hardy’s
early work [31]. The idea was applied to spin chains, see, e.g. [32–35], and other 1D systems,
see, e.g. [29]. A general flux (current) operator may be obtained by assuming that there exists an
operator continuity equation, for instance ∂h(x,t)

∂t
+ ∂j (x,t)

∂x
= 0 in one dimension, where h(x, t)

is the energy density operator and j (x, t) is the energy flux operator. For an N-site chain with
M states at each site, one can introduce a workable definition of the energy density operator,
h(x, t) = ∑

s hsδ(x − xs), where hs is a discrete energy density operator of the sth site. The
total Hamiltonian of the chain is therefore given by H = ∫

dx h(x, t) = ∑
s hs . Similarly, the
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energy flux can be written as the sum of localized contributions j (x, t) = ∑
s jsδ(x − xs), so

that the continuity equation can be written in a discrete form,

dhs

dt
= js−1 − js

a
, (1)

where a is the lattice spacing and js/a is the current operator. The time evolution of hs in
the Heisenberg representation satisfies the Heisenberg equation of motion, d

dt
hs = i[H,hs],

assuming hs does not depend on time in the Schrödinger representation (h̄ ≡ 1). This yields

dhs

dt
= i

∑
k

[hk, hs]. (2)

In general, equation (2) cannot be expressed in terms of the difference of two operators at two
sites as in (1), yet we can identify the currents js and js−1 for a specific model Hamiltonian.
We use here a generic 1D Hamiltonian with up to two-body nearest-neighbor interactions,

H =
N∑

s=1

(
h0

s + V (s, s + 1)
)
, (3)

where h0
s is the local Hamiltonian at site s. While the local energy density cannot be uniquely

defined [23], one could make a reasonable separation of V , and assign mixed terms half to
site s and half to s + 1. With this partition the energy density at the sth local site becomes

hs = h0
s + 1

2 [V (s, s + 1) + V (s − 1, s)]. (4)

This equation satisfies H = ∑N
s=1 hs , as required, when one sets V (N,N + 1) = V (0, 1) = 0.

For this Hamiltonian, the energy flux operator can be identified as

js = j
(2)
s→s+1 + j (4)

s , (5)

where

j
(2)
s→s+1 = ia

2

[(
h0

s − h0
s+1, V (s, s + 1)

]
, (6)

is a two-site contribution and

j (4)
s = ia

2
{[V (s, s + 1), V (s + 1, s + 2)] + [V (s − 1, s), V (s, s + 1)]} (7)

is an operator connecting four sites, accounting for higher order inter-site interaction terms.
As we show below, in some cases it is exactly zero. It is also noticeable that in our case (2)
could be written in terms of the difference of operators at two neighbor sites. The definition
also naturally classifies the perturbative orders with respect to the inter-site coupling V : the
order of the flux operator (7) is higher than that of (6).

Definitions (5)–(7) possess significant symmetric features. For instance, j
(2)
s→s+1 trivially

shows the exchange symmetry j
(2)
s→s+1 = −j

(2)
s+1→s , assuming V (s, s + 1) = V (s + 1, s). The

exchange symmetry is an essential requirement when defining a current operator, since the
current in opposite directions must have the same absolute value. The operators j (4)

s has a
similar exchange property, but four sites are involved.

Definition (5) is state- and symmetry-independent unlike the expression recently utilized
in [29, 36–38], js = ia

[
h0

s , V (s, s + 1)
]
, which requires that the Hamiltonian fulfils the

symmetric condition
[
h0

s + h0
s+1, V (s, s + 1)

] = 0, see appendix A for details. In order to
increase generality, [36] further suggests a ‘symmetrized local flux’ that has the same form as
j

(2)
s→s+1.

The energy flux operator was also extensively examined in 1D chains in the absence of
an on-site energy term

(
h0

s = 0
)
, e.g. the Heisenberg model at zero magnetic field [39]. In this
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case the energy at each site was defined as hs = V (s, s + 1), leading to the current operator
js−1 = ia[V (s − 1, s), V (s, s + 1)]. Since in this paper we are interested in the opposite limit,
i.e. in structures where the inter-site interaction is considered as a perturbation to the local
energy, e.g. impurity models, choice (4) for the local energy is more appropriate.

Note that we could have also defined a high-order local interaction term U(s). For
phononic systems U includes on-site interactions, incorporating harmonic and anharmonic
contributions. For fermionic systems U may represent a local electron–electron repulsion.
The potentials V (s, s + 1) and V (s, s + 1) + U(s) + U(s + 1) indeed produce different flux
operators. We adopt here the convention that local s interactions (one-body and many-body)
are all included within the potential h0

s . Finally, one could consider next nearest-neighbor
interactions and, by following the same procedure, identify the current js .

At this point we would like to comment that the separation of the energy change in a
quantum system into its work and heat contributions is a fundamental question in physics.
When the subsystem is coupled to a thermal bath, one refers to the energy exchange between the
components as heat, while when the reservoir is mechanical, energy exchange is referred to as
work. For an externally modulated system the heat flux and power can be standardly identified
[19, 40]. However, for general modular systems the classification is not clear. In a recent
work, Weimer et al [41] suggested to identify work and heat in quantum systems as changes
in energy that do not alter the von Neumann entropy, and do change it, respectively. The
focus of our work is the definition of the energy flow operator, valid in various modular-hybrid
structures, and we do not discuss here its separation to the work and heat components.

3. Current operator in hybrid structures

Definition (5) can be applied to non-identical interacting systems which are spaciously
connected. For example, we may consider an impurity spin coupled to two solids, and
study the energy current at the contact. The bulk, serving as a thermal reservoir, may be
composed of electrons (the Kondo problem) [42], collections of harmonic modes (the spin-
boson model) [43] or spins [44, 45]. This impurity-bath scenario is the standard in molecular
electronics and nanomechanical experiments, where the heat-transfer properties of a molecule
connected to solid or liquid interfaces are investigated [2–5].

The generic impurity-bath Hamiltonian includes a central unit Hspin, two independent
reservoirs H 0

ν (ν = L,R) maintained at different temperatures, and system–bath couplings
Vν . The energy flux operator, e.g. at the L contact is given by (5)–(7), disregarding for
convenience the lattice constant a. Assuming that [VL, VR] = 0 we find that the heat current
from the L contact into the junction is given by

jL = i

2

[
H 0

L − Hspin, VL

]
. (8)

We then apply this result assuming either bosonic baths or electronic reservoirs.

Spin-boson model. A two-level system connected to two harmonic baths held at different
temperatures serves as a prototype model for investigating phononic transfer in a nonlinear
molecular junction. Calculations at the level of the Master equation, assuming weak system–
bath couplings while ignoring coherence effects, have revealed interesting dynamics, e.g.
thermal rectification [21], negative differential resistance [46] and pumping of heat [47]. It is
of interest to derive a general expression for the heat current which is not limited to the weak
coupling limit. Such an expression will open the door for non-perturbative calculations of
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heat current in strongly coupled molecular systems. The multi-bath spin-boson Hamiltonian
is given by

HSB = B

2
σ z +

∑
ν,q

ωqb
†
ν,qbν,q + σx

∑
ν,q

λν,q

(
b†

ν,q + bν,q

)
. (9)

Here, σ i (i = x, y, z) are the Pauli matrices and B is the spin splitting. The reservoirs
(ν = L,R) include two infinite sets of harmonic oscillators (creation operators b

†
ν,q). Spin–

bath interaction strength is denoted by λν,q , possibly different at the two ends.
Let H 0

ν denotes the local Hamiltonian of the ensemble of harmonic oscillators at the ν

boundary, Hspin = B
2 σ z be the Hamiltonian of the spin and Vν = ∑

q λν,qσ
x
(
b
†
ν,q + bν,q

)
be

the interaction. Using (8), the energy flux from the L contact to the spin unit is given by

jL = 1

2

[
iσx

∑
q

ωqλL,q

(
b
†
L,q − bL,q

)
+ Bσy

∑
q

λL,q

(
b
†
L,q + bL,q

)]
, (10)

or equivalently,

jL = 1
2 [BσyXL + σxPL], (11)

where XL = ∑
q λL,q

(
b
†
L,q + bL,q

)
and PL = i

∑
q λL,qωq

(
b
†
L,q − bL,q

)
. An analogous

expression exists at the R side. It can be shown that the flux operator (10) reduces to the
stationary heat flux expression utilized in [21, 46, 47] when system–bath couplings are weak
and the Markovian limit is assumed,

〈jL〉 = −B
[
kL
u→dpu − kL

d→upd

]
. (12)

Here, 〈j 〉 denotes the trace over system and bath degrees of freedom, pu (pd) is the steady-state
population of the up (down) spin level and Tν is the temperature at the ν contact. The rate
constants satisfy the detailed balance relation, kν

d→u = kν
u→d e−B/Tν , where

kν
u→d =

∫ ∞

−∞
eiBτ 〈Xν(τ)Xν(0)〉 dτ

= 2π
∑

q

λ2
ν,q

[
nν

B(ωq) + 1
]
δ(B − ωq). (13)

Here, nν
B(ωq) = [eωq/Tν − 1]−1 is the Bose–Einstein distribution function with the Boltzmann

constant kB ≡ 1. Equation (12) describes energy current at the L contact as the balance
between an energy extraction from the L reservoir into the spin, and an energy loss from the
spin to the bath. Appendix B presents in detail the derivation of this perturbative result from
the general operator expression (11).

Similarly, one may analyze the transport properties of the diagonally coupled spin-boson
model with Vν = σ z

∑
q κν,q

(
b
†
ν,q + bν,q

)
and Hspin = B

2 σ z + �
2 σx , leading to complicated

behavior due to the non-separability of the two reservoirs [21].

Spin-fermion model. The spin-fermion model, where a spin impurity is coupled to two Fermi
seas of different temperatures and/or chemical potentials, is another example of a hybrid
structure, useful e.g. for studying electronic and radiative heat transfer between metals [22],

HSF = B

2
σ z +

∑
ν,k

εkc
†
ν,kcν,k + σx

∑
ν,k,q

αν,k,qc
†
ν,kcν,q . (14)

The first term here accounts for spin splitting. The second term includes the two independent
reservoirs (leads) of spinless electrons, creation operator c

†
ν,k (ν = L,R). We assume that

the leads are kept (each) in thermal equilibrium at temperature Tν and chemical potential μν .

5
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The last term in (14) describes spin–bath interactions, where we disregard charge tunneling
between the metals and allow only for transfer of energy excitations. Utilizing (8), the heat
current at the L contact is given by

jL = i

2

⎡⎣σx
∑
k,q

εkαL,k,q

(
c
†
L,kcL,q − c

†
L,qcL,k

) − iBσy
∑
k,q

αL,k,qc
†
L,kcL,q

⎤⎦ . (15)

If the metals have a strictly linear dispersion relation, this result can be exactly mapped into a
bosonized description [49] to yield the current (10). Deviations are expected when the metals
have energy-dependent density of states [22]. Following the derivation sketched in appendix
B, taking into account the fermionic nature of the operators, one can show that in second-order
system–bath coupling, going into the Markovian limit, the stationary heat current is given by
(12) with the rates

kν
d→u =

∫ ∞

−∞
e−iBτ 〈Fν(τ)Fν(0)〉 dτ

= 2π
∑
k,q

|αν,k,q |2nν
F (εk)

[
1 − nν

F (εq)
]
δ(εk − εq − B) (16)

kν
d→u = kν

u→d e−B/Tν ,

where Fν = ∑
k,q αν,k,qc

†
ν,kcν,q and nν

F (ε) = [e(ε−μν)/Tν + 1]−1 is the Fermi–Dirac distribution
function of the ν bath.

The perturbative rate expression (12) also holds for mixed boson–fermion systems, e.g.
when energy is directed from a phonon bath into an electronic excitation through a local
impurity. One simply employs then expressions (13) and (16) for the phononic and electronic
bath-induced transitions.

4. Current conservation conditions for bosonic and fermionic systems

With the help of the energy flux operator we can obtain general properties of specific quantum
systems [39]. This is in contrast to standard calculations where one needs to make use of
specific quantum states [33–35]. We then prove that linear harmonic systems and some special
spin chains (XY , Ising) have zero thermal resistance using the operator form of the energy
flux.

Bosons. We consider the quantized system used in [25], h0
s = p2

s /2 + U(xs) and inter-site
potential V (s, s + 1) = V (xs, xs+1), where xs and ps are the coordinate and momentum of the
particle at the s site. It is easy to show that j (4)

s = 0, thus the flux operator is given by

js = a

4

[{
ps,

∂V (s, s + 1)

∂xs

}
+

−
{
ps+1,

∂V (s, s + 1)

∂xs+1

}
+

]
, (17)

where {}+ denotes the anticommutation relation. This is just the quantized form of the classical
flux defined in [25]. For the quadratic interaction (xs − xs+1)

2 we should exclude the local
terms x2

s and x2
s+1, or shift them into h0

s and h0
s+1, respectively, as discussed in section 2. For

a bilinear coupling model we thus consider the interaction V (s, s + 1) = λxsxs+1 with spring
constant λ. The flux operator then reads

js = aλ(psxs+1 − xsps+1)/2

= iaλ
(
b†

sbs+1 − b
†
s+1bs

)/
2, (18)

6
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where the second line is the bosonic expression with the creation (annihilation) operator b
†
s

(bs). The commutation relation between the total Hamiltonian and the current operator is
given by

[js,H ] = i
aλ

2

(
xs

∂U(xs+1)

∂xs+1
− xs+1

∂U(xs)

∂xs

)
+ Ô(λ2). (19)

Therefore, if ∂U(x)

∂x
= 0, or U ∝ x2, [js,H ] = 0 within first-order coupling. This implies that

free particle motion and harmonic potentials pertain a constant current, or in other words, the
energy current is conserved in these systems.

One can also calculate the higher order term in (19), Ô(λ2) = iaλ2
(
x2

s +xsxs+2−xs−1xs+1−
x2

s+1

)/
2. If the total flux is defined as J = ∑N

s=1 js , the commutation relation between the
complete flux and the total Hamiltonian is given by [J,H ] = iλ2 a

2

(
x2

1 − x2
N

)
for the harmonic

U ∝ x2 potential. Therefore, the Heisenberg equation of motion reads

dJ/dt = aλ2

2

(
x2

1 − x2
N

)
. (20)

This result shows that the total flux depends only on the contacts properties: coupling strength
and temperature (going into thermal averages). Furthermore, in closed loop systems, the
complete current J is a constant operator. This conclusion is well established, however,
we give here a simple proof of the operator form, without the need to go into the system’s
quantum states. It can be shown that the current is also conserved for disordered 1D harmonic
systems. For example, assuming different force constants between sites λs,s+1, one gets
dJ/dt = a

2

(
λ2

1,2x
2
1 − λ2

N−1,Nx2
N

)
.

Fermions: nearest-neighbor spin systems. We then consider a periodic spin chain of length N.
The system can be mapped into a system of fermions using the Wigner–Jordan transformation,
see, e.g. [50]. Let the on-site potential h0

s and the inter-site potential V be

h0
s = ε

2
σ z

s , V (s, s + 1) = λ
(
Aσx

s σ x
s+1 + Bσy

s σ
y

s+1 + Cσz
s σ z

s+1

)
, (21)

where A,B,C are the interaction coefficients. It is easy to show that the first-order flux
operator is given by

j
(2)
s→s+1 = aελ

A + B

2

(
σ

y

s+1σ
x
s − σy

s σ x
s+1

)
. (22)

Using the Wigner–Jordan transformation, the current can also be rewritten as

j
(2)
s→s+1 = iaελ(A + B)

(
c
†
s+1cs − c†scs+1

)
, (23)

expressed in terms of spinless fermionic creation and annihilation operators c
†
s and cs ,

respectively. The second-order contribution j (4)
s ∝ λ2 is nonzero in general, but is too

cumbersome to be included here.
The current operator j

(2)
s→s+1 is essentially the standard spin current operator multiplied

by the bias ε. This term reflects energy flow due to spin current, while j (4)
s is the current

of interaction energy [39]. At weak inter-site coupling, λ � ε, j
(2)
s→s+1 dominates the energy

current, while for zero magnetic fields only j (4)
s survives. Throughout the paper we always

assume nonzero magnetic splitting ε, unless otherwise stated.
We continue and analyze current conservation in model (21),

[js,H ] = [
j

(2)
s→s+1, h

0
s + h0

s+1

]
+

[
j (4)
s , h0

s + h0
s+1

]
+

[
j

(2)
s→s+1, V (s − 1, s)

+ V (s, s + 1) + V (s + 1, s + 2)
]
. (24)

7
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To the first order in λ the commutator is therefore given by[
j

(2)
s→s+1, h

0
s + h0

s+1

] = aε2λ
A + B

4

[
σ

y

s+1σ
x
s − σy

s σ x
s+1, σ

z
s + σ z

s+1

] = 0. (25)

Thus, for the periodic spin chains considered here, only high-order terms in λ may lead
to current decay. We then discuss some special cases: (i) A = −B, corresponding
to the antiferromagnetic phase. Here j

(2)
s→s+1 = 0, implying that there is no current in

the antiferromagnetic phase in the first-order approximation. (ii) The Heisenberg model,
A = B = C. In this case, the flux operator (6) agrees with the definition of [29], see also
appendix A, since

[
(σ z

s + σ z
s+1, V (s, s + 1)

] = 0. This system was extensively investigated in
[29, 38]. (iii) The XY model, A = B and C = 0. We calculate here the high-order contribution
to the current and find

j (4)
s = i

aλ2A2

2

(
c†scs+2 − c

†
s+2cs + c

†
s−1cs+1 − c

†
s+1cs−1

)
. (26)

Combining (23) with (26) we get that [js,H ] = 0 + Ô(λ2) in the XY model. The current
operator is therefore a constant in the first-order approximation, while the total current
J = ∑

s js exactly becomes

dJ/dt = 8aελ2A2(n1 − nN), (27)

in analogy with equation (20) for the bosonic Hamiltonian. Here, ns = c
†
scs is the number

operator. We conclude that the total current across the systems depends only on the properties
of the chain’s ends. Thus, in closed loop systems the total current J is a constant operator.

As a final case (iv) we consider the transverse Ising model, B = C = 0. Here,
j

(2)
s→s+1 = λεA

2

(
σx

s σ
y

s+1 − σ
y
s σ x

s+1

)
, j (4)

s = 0. The commutator [js,H ] is zero in the first

order of λ while the second-order contribution, resulting from the commutator
[
j

(2)
s→s+1,

V (s − 1, s) + V (s, s + 1) + V (s + 1, s + 2)
]
, leads to

dJ/dt = 4aελ2A2(n1 − nN). (28)

We can summarize our observations as follows: if a Hamiltonian is written by a
linear combination of bilinear operators, a bosonic set

{
b
†
sbt , b

†
sb

†
t , bsbt

}
and a fermionic

set
{
c
†
sct , c

†
sc

†
t , csct

}
, it can always be expressed in terms of quasiparticle operators γq , where

H = ∑N
q=1 εqγ

†
q γq (see, e.g. [51]). Since there is no interaction between the quasiparticles,

the systems behaves like a collection of free particles. The harmonic oscillator chain with
linear couplings is an example of bosonic Hamiltonian. The XY models are examples for
independent fermions. Both systems yield ballistic motion with no thermal resistance. In
contrast, the Heisenberg model with nonzero magnetic field does not belong to such systems
because it contains an on-site interaction c

†
scsc

†
t ct when C is not zero [20].

5. Necessary condition for current conservation for a general one-dimensional system

We consider a chain of length N with M levels at each site. The commutation relation between
the total Hamiltonian and the flux operator can be written as

[js,H ] = F(λ) + Ô(λ2), (29)

where F(λ) is the first-order term and Ô(λ2) contains higher order terms in λ. The necessary
condition for current conservation is F(λ) ≡ 0. We emphasize that this is only a necessary
condition. If F(λ) 	= 0 the system potentially shows a diffusive dynamics.

The most general Hamiltonian for this system can be generated by M2 generator set
g = {−→h ,E

−→α }, where
−→
h = (n1, n2, . . . , nM) is the vector operator with ni = |i〉 〈i| and

8
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E
−→α denotes M2 − M operators |i〉 〈j | where i 	= j . The vectors −→α ’s are M-dimensional

and are usually referred to as roots [52]. The commutation relation between
−→
h and E

−→α is
[
−→
h ,E

−→α ] = −→α E
−→α , where the vector −→α can be considered as an eigenvalue of the vector

operator
−→
h . For instance, in the two-level system (M = 2),

−→
h = (|1〉 〈1| , |2〉 〈2|), E−→α =

(|1〉 〈2| , |2〉 〈1|) and there are two roots −→α1 = (1,−1) and −→α2 = (−1, 1), corresponding to
E

−→α1 = |1〉 〈2| and E
−→α2 = |2〉 〈1|. Appendix C presents the M = 3 case.

Using this notation, the most general Hamiltonian up to a two-body interaction can be
written as

H =
∑

s

−→ε · −→
hs + λ

∑
s

[V−→α ,
−→
β E

−→α
s E

−→
β

s+1 + Vd(s, s + 1)], (30)

where the vector −→ε = (ε1, ε2, . . . , εM), εi is the i state energy level and V−→α ,
−→
β are inter-site

coupling parameters. The units are assumed to have identical spectra and we use constant
nearest-neighbor interactions along the chain. The last term in (30) includes many-body
interactions Vd(s, s + 1) = ∑

Ui,jn
i
sn

j

s+1. It is easy to show that the commutator of the current
with H yields

F(λ) = − iaλ

2

∑
V−→α ,

−→
β [(−→ε · −→α )2 − (−→ε · −→

β )2]E
−→α
s E

−→
β

s+1. (31)

The necessary condition for current conservation, F(λ) ≡ 0, therefore implies

−→ε · −→α = ±−→ε · −→
β (32)

for nonzero coupling parameters V−→α ,
−→
β . This condition (with the plus sign) is naturally

fulfilled for harmonic systems, since (εj−1 − εj ) = (εk−1 − εk) for any j, k. For fermionic
models M = 2 and the −→ε · −→

β = −−→ε · −→α condition is trivially conformed. Both systems
indeed lead to current conservation (see section 4).

For a system with an arbitrary spectra this condition translates into −→α = ±−→
β , implying

that the interaction contains only the following terms: E
−→α
s E

−→α
s+1, E

−→α
s E−−→α

s+1 and Vd(s, s + 1).1

The corresponding current operator is

j
(2)
s→s+1 = ia

∑
V−→α ,−−→α (−→ε · −→α )E

−→α
s E−−→α

s+1 . (33)

This expression reduces into the fermionic limit (section 4) when M = 2. The M = 3 case is
exemplified in appendix C.

The necessary condition (32) is an imperative step toward identifying normal transport
(Fourier) systems, as it helps us to pinpoint current conserved systems directly, without detailed
numerical calculations. If the system satisfies −→ε · −→α 	= ±−→ε · −→

β , one can directly deduce
that the thermal current is not conserved. Note that in the Heisenberg model F(λ) = 0, and
only the next term in equation (29) is finite, accounting for the dissipation of energy2.

6. Formal Fourier’s law

Recently, there are several ideas of how to approach Fourier’s law from fundamental principles
[26–30]. Here we will show that the appropriately defined flux operator naturally leads to the
discrete form of the law. The derivation yields the conductivity coefficient for a general 1D

1 For a two-level system E
−→α = σ±, thus F(λ) = 0 when the inter-site interaction includes the following terms:

σ +
s σ−

s+1, σ
+
s σ +

s+1 and σ−
s σ−

s+1.
2 In first order of λ the commutator [js ,H ] = [j (2)

s→s+1, h
0
s + h0

s+1], where j
(2)
s→s+1 ∝ [h0

s − h0
s+1, V (s, s + 1)]. Since

Vd ∝ Uni
sn

j

s+1 commutes with h0
s ∝ ni

s , the many-body Vd term does not destroy current conservation in the lowest
approximation.

9
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system in terms of the Hamiltonian parameters. We begin with a generic nearest-neighbor
Hamiltonian

H =
∑

s

(
h0

s + V (s, s + 1)
)
, (34)

including local interactions and inter-site couplings. In our definition (6), the average flux,
j = Tr{ρj}, at weak interactions reads

j
(2)

s→s+1 = − ia

2
Tr

{
ρ
[(

h0
s+1 − h0

s

)
, V (s, s + 1)

]}
= −a

2
Tr

{
�h0

s�(t)
}
, (35)

using the cyclic property of the trace. Here, ρ is the total density matrix, �h0
s = h0

s+1 − h0
s is

the difference between local energies at neighboring sites and �(t) = i[V (s, s + 1), ρ(t)] is
Hermitian. We can also write this expression explicitly in terms of local s functions,

j
(2)

s→s+1 = −a

2
(gs+1 − gs), (36)

where gs = Tr
{
h0

s�(t)
}
. If we can define a local temperature Ts at each site, we can then

relate the current between sites with the temperature difference �Ts = Ts+1 − Ts ,

j
(2)

s→s+1 = −
(

a2 �gs

�h
0
s

Cs

)
�Ts

a
, (37)

where �gs = gs+1 − gs , and Cs = �h
0
s

�Ts
is the specific heat. This is the discrete Fourier’s law

[29, 38]. We can identify the microscopic-local thermal conductivity as κs = a2 �gs

�h
0
s

Cs , as

long as gs can be uniquely defined (see discussion below) and the ratio �gs

�h
0
s

is finite.

As an example we consider a three-spin system. For the XY model, if the initial
state is |0〉1 |1〉2 |0〉3, it is easy to show that �g2

�h
0
2

= 2
√

2λ sin 2
√

2λt

3 cos 2
√

2λt+1
. For weak coupling,

λt < 1,
�g2

�h
0
2

→ 2λ2t holds. The thermal conductivity is then given by κ = 2λ2tCs , in

agreement with our recent calculation [30]. It also shows that although the total current of
the XY model is conserved, the partial current between two sites may have the form of the
Fourier’s law before thermal equilibrium sets [24].

We then explain how to define gs uniquely. Although we could formally write
equation (37), gs may not be uniquely defined because �(t) depends on the index s: �(t)

could be either defined as i[V (s, s + 1), ρ(t)] or i[V (s, s − 1), ρ(t)]. Therefore, the condition
for gs to be exclusively defined is

Trs{[V (s, s + 1), ρ(t)]} = Trs{[V (s, s − 1), ρ(t)]}. (38)

The trace Trs runs over all sites except site s. It is easy to show that Ps−1,s+1ρ(t)Ps−1,s+1 = ρ(t)

is a sufficient condition for satisfying equation (38), where Ps−1,s+1 is the exchange operator
between sites s − 1 and s + 1. If the total Hamiltonian is invariant under Ps−1,s+1, as it is in
many physical cases, the last condition translates into a condition on the system preparation,

Ps−1,s+1ρ(0)Ps−1,s+1 = ρ(0). (39)

This is a sufficient (but not necessary) condition for attaining a unique expression for gs .
Once gs is carefully defined, we can proceed and calculate the thermal conductivity using
equation (37). In the above example the initial state was set to |0〉1 |1〉2 |0〉3, which is
indeed invariant under the exchange P1,3. Note that since the validity of the Fourier’s law is
independent of initial conditions, the requirement to fulfil equation (39) is solely meant for
distinctively identifying the conductivity.

10
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7. Conclusion

In this paper, we present and re-examine the energy flux operator that exactly satisfies the
continuity equation for a general Hamiltonian in one dimension. Based on the definition, we
deduce the necessary conditions on the inter-site interaction that result in current conservation.
This analysis sets the first step toward the exploration of the validity of Fourier’s law of heat
conduction in Hamiltonian systems: systems that conserve energy have diverging conductivity.
As an example, using a simple operator algebra, we prove that independent bosons and
fermions conduct energy ballistically. We further apply the definition to various impurity
models, relevant for understanding energy flow in nanojunctions, and obtain a non-perturbative
non-stationary expression for the heat current between interfaces. The microscopic heat
conductivity coefficient naturally emerges in the present definition.

While previous works have typically relied on specific quantum states, calculating only
expectation values, see for example [34–38], the results presented here essentially depend only
on operator calculations. Possible extensions include generalization of the energy current
definition to time-dependent situations, and exploration of the necessary condition for the
applicability of the Fourier’s law of heat conduction in 1D chains [30].
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Appendix A. An alternative, symmetry-limited, definition for the energy current

We follow here a symmetry-limited definition of the energy flux operator often adopted in the
literature [29, 36, 37]. The generic 1D Hamiltonian includes local potentials and inter-site
interactions

H =
∑

s

(
h0

s + V (s, s + 1)
)
. (A.1)

The energy flow operator is defined by considering the time evolution of the local, non-
interacting energy operator,

dh0
s

dt
= i

[
H,h0

s

]
= − i

[
h0

s , V (s, s − 1)
] − i

[
h0

s , V (s, s + 1)
]
. (A.2)

We next assume that a continuity equation for h0
s holds, based on the approximation that the

local energy is conserved [36]

dh0
s

dt
= (js−1 − js)

a
. (A.3)

By comparing equation (A.2) with (A.3) one can identify the current between sites as

js = ia
[
h0

s , V (s, s + 1)
]; js−1 = −ia

[
h0

s , V (s, s − 1)
]
. (A.4)

However, the second equality above produces js = −ia
[
h0

s+1, V (s + 1, s)
]

when shifted to
site s. This can be consistent with the first equality of equation (A.4) only if the condition[

h0
s + h0

s+1, V (s, s + 1)
] = 0 (A.5)

is satisfied. Definition (A.4) is thus restricted to a limited class of Hamiltonians that satisfy
(A.5). It is not satisfied, for example, in phononic systems

[
h0

s = (
x2

s + p2
s

)/
2;V (s, s + 1) =

11
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V (xs, xs+1)
]

irrespective of the coupling strength. Therefore, the formulation in [36–38],
utilizing this definition, cannot lead to expressions (17)–(21), as it is limited to a small class
of spin models. The Heisenberg spin- 1

2 model, h0
s = ε

2σ z
s , V (s, s + 1) = λ

(
σx

s σ x
s+1 + σ

y
s σ

y

s+1 +
σ z

s σ z
s+1

)
, is an example of a system obeying (A.5).

We emphasize again that the energy current is defined here by studying local, non-
interacting energy changes. In contrast, equation (5) defines the energy current by studying
the total energy at a site, incorporating inter-site interactions, see equation (4).

Appendix B. Spin-boson model: derivation of the weak coupling expression for the

energy current

We derive here a weak-coupling expression for the steady-state energy current in the spin-
boson model using the non-perturbative definition (10). The two-bath (ν = L,R) spin-boson
Hamiltonian is given by

HSB = Hspin +
∑

ν

H 0
ν +

∑
ν

Vν, (B.1)

where

Hspin = B

2
σ z; H 0

ν =
∑

q

ωqb
†
ν,qbν,q; Vν = σxXν. (B.2)

Here, B is the spin splitting, b
†
ν,q is a creation operator satisfying the bosonic statistics and

Vν includes system–bath interactions at each contact, Xν = ∑
q λν,q

(
b
†
ν,q + bν,q

)
. There is no

direct coupling between the two harmonic baths (temperature Tν), as they are coupled only
through the central spin.

The general expression for the current operator is given by equation (6), jL =
i
2

[
H 0

L − Hspin, VL

]
, disregarding for convenience the factor a. Note that j (4) = 0, see

equation (7), since [VL, VR] = 0. In the present model the current operator from the L
interface to the spin is given by

jL = 1
2 [BσyXL + σxPL], (B.3)

where PL = i
∑

q λL,qωq

(
b
†
L,q − bL,q

)
denotes the sum of the momenta of the harmonic

oscillators at the left boundary. This expression is valid in the non-perturbative regime and
for non-stationary situations. In steady state the expectation value of the interaction is zero,
e.g. at the L contact,〈

∂VL

∂t

〉
= 〈σ̇ xXL + σxẊL〉 = 0. (B.4)

Since σ̇ x = −Bσy and ẊL = PL, we find that 〈σxPL〉 = 〈BσyXL〉. The stationary heat
current is therefore given by

〈jL〉 = Tr{ρjL} = B Tr{ρσyXL}, (B.5)

where ρ is the total density matrix. Using the energy representation, σ z = |u〉〈u| −
|d〉〈d|, σ x = |d〉〈u| + |u〉〈d|, σ y = −i|u〉〈d| + i|d〉〈u|, we can write the heat current as

〈jL〉 = iB TrB{(ρu,d − ρd,u)XL}, (B.6)

where TrB denotes the trace over the thermal baths (L and R) states only. This expression
can be evaluated by solving the Liouville equation, written here explicitly for the nondiagonal
matrix element

ρ̇d,u(t) = iBρd,u(t) − iX(t)ρu,u(t) + iρd,d(t)X(t), (B.7)
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with X = XL + XR,X(t) = eiHBtX e−iHBt . Formal integration of this differential equation
yields

ρd,u(t) =
∫ t

0
eiB(t−τ)[−iX(τ)ρu,u(τ ) + iρd,d(τ )X(τ)] dτ. (B.8)

We then evaluate the term TrB{ρd,uXL} under the following approximations: (i) weak system–
bath coupling, neglecting higher order correlation functions, (ii) Markovian limit, assuming the
spin’s relaxation timescale is longer than that of the bath fluctuations, and (iii) initial factorized
condition, where ρ is well approximated by the product ρ(t = 0) = ρspin(t = 0)ρLρR . Here,
ρν = e−H 0

ν /Tν /Tr
{
e−H 0

ν /Tν
}

are the density operators of the thermal baths. These assumptions
are compatible with the Redfield approximation [53]. Using (B.8) we get

TrB{ρd,uXL} = −ipu(t)

∫ ∞

0
eiBτ 〈XL(τ)XL(0)〉 dτ + ipd(t)

∫ ∞

0
eiBτ 〈XL(0)XL(τ)〉 dτ,

(B.9)

where pu = TrB{ρu,u} denotes the population of the spin-up state and pd is the spin-down
population. Note that terms of the form 〈XL(t)XR(τ)〉 disappear, since the two reservoirs are
not correlated. Following the same procedure for the second term in equation (B.6) we obtain

TrB{ρu,dXL} = ipu(t)

∫ 0

−∞
eiBτ 〈XL(τ)XL(0)〉 dτ − ipd(t)

∫ 0

−∞
eiBτ 〈XL(0)XL(τ)〉 dτ.

(B.10)

Combining equations (B.9) and (B.10) provides us with the stationary thermal current under
weak-coupling and Markovian approximations,

〈jL〉 = −B
[
puk

L
u→d − pdk

L
d→u

]
, (B.11)

with the relaxation rates

kL
u→d =

∫ ∞

−∞
eiBτ 〈XL(τ)XL(0)〉 dτ, kν

d→u =
∫ ∞

−∞
e−iBτ 〈XL(τ)XL(0)〉 dτ. (B.12)

Equation (B.11) describes energy current through the junction, calculated, e.g. at the L contact,
as the balance between an energy gain from the reservoir to the spin and an energy loss from
the spin to the L bath.

The diagonal elements of the density matrix, pd and pu, can be further calculated under
the same set of approximations, to yield the quantum Master equation,

ṗu = −pu(t)
∑

ν

kν
u→d + pd(t)

∑
ν

kν
d→u; pu(t) + pd(t) = 1. (B.13)

In steady state (ṗ = 0) the spin occupations are

pu = kL
d→u + kR

d→u

kL
d→u + kR

d→u + kR
u→d + kR

u→d

; pu + pd = 1. (B.14)

Plugging equation (B.14) into (B.12) leads to an explicit expression for the current

〈jL〉 = B
kL
u→dk

R
u→d(e

−B/TL − e−B/TR )

kR
u→d + kL

u→d + kR
d→u + kL

d→u

. (B.15)

An analogous expression holds at the R contact. This is the well-established quantum Master-
equation limit, used in various applications [21, 22, 46, 47, 54–56].

We can also extend the calculations to non-stationary situations. In this case one needs
to evaluate the extra term Tr{σxPL} = TrB{(ρu,d + ρd,u)PL} in equation (B.3), resulting in
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momentum–position correlation functions of the form, 〈PL(t)XL(τ)〉 in second-order system–
bath couplings.

Note that
[
H 0

L + Hspin, VL

] 	= 0 for the spin-boson Hamiltonian. Therefore, we
cannot use in general the definition of appendix A, jL = i[Hspin, VL]. This limited
expression is still applicable in a steady-state situation since 〈∂VL/∂t〉 = 0, translating into
〈[HSB, VL]〉 = 〈[

H 0
L + Hspin, VL

]〉 = 0; see equation (A.5).

Appendix C. Current conservation in an M = 3 states model

We clarify the notation and the results of section 5 using an M = 3 level system. According
to our notation, the diagonal operators are

−→
h = (|1〉〈1|, |2〉〈2|, |3〉〈3|). (C.1)

The six nondiagonal operators with their respective roots are

E
−→α1 = |1〉〈2|, −→α1 = (1,−1, 0)

E
−→α2 = |2〉〈1|, −→α2 = (−1, 1, 0)

E
−→α3 = |1〉〈3|, −→α3 = (1, 0,−1)

E
−→α4 = |3〉〈1|, −→α4 = (−1, 0, 1)

E
−→α5 = |2〉〈3|, −→α5 = (0, 1,−1)

E
−→α6 = |3〉〈2|, −→α6 = (0,−1, 1),

(C.2)

where the energies at each site are −→ε = (ε1, ε2, ε3). If the system conserves current
(i.e., it fulfils (32)), the site–site interaction can include only the following terms: E

−→αn
s E

−→αn

s+1

(n = 1, . . . , 6) and the pairs E
−→α1
s E

−→α2
s±1, E

−→α3
s E

−→α4
s±1, E

−→α5
s E

−→α6
s±1. The current operator in this model

is given by equation (33),

j
(2)
s→s+1 = ia

{
V−→α1 ,−→α2 (ε1 − ε2)

(
E

−→α1
s E

−→α2
s+1 − E

−→α2
s E

−→α1
s+1

)
+ V−→α3 ,−→α4 (ε1 − ε3)

(
E

−→α3
s E

−→α4
s+1 − E

−→α4
s E

−→α3
s+1

)
+ V−→α5 ,−→α6 (ε2 − ε3)

(
E

−→α5
s E

−→α6
s+1 − E

−→α6
s E

−→α5
s+1

)}
, (C.3)

a generalization of the spin chain result (22).
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